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ABSTRACT

In this work, a Semi linear Differential System of Non Local Initial Conditions with Distributed Delays in the
Control in Banach spaces of the form

0
x1(t) = Ax(6) + f(t,x(®)) +J [doH(t,0)] u(t + 0)
-h

x(0) + g(x) = xo

is presented for controllability analysis. Necessary and Sufficient Conditions for the System to be
null controllable are established . Use is made of the Unsymmetric Fubini theorem and Schauders’
fixed point theorem to etablish results .Conditions are also placed on the perturbation f

which guaratee that if the linear control base system is proper and if the uncotrolled linear
system is unif ormly asymptotically stable, then the Semilinear Dif ferential System is
nullcontrollable with constraints .

Keywords: null-controllability, semi-linear, distributed delays, nonlocal initial conditions, Banach spaces

1. INTRODUCTION

Controllability and Null Controllability of nonlinear systems represented by differential and
Integrodifferential equations in Banach Spaces have been investigated extensively by many authors;
Balachandran, K. Anandhi (2004), Y.K.Chang, J.J. Nieto(2009), Oraekie,P.A(2017).A method is to
transform the controllability problem into a fixed point problem for an appropriate operator in a function
space. However, Balachandran and Kim(2003) pointed out that controllability results are only true for
ordinary differential Systems in finite-dimensional spaces if the corresponding operator semi groups are
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compact.Xue,X(2008) studied the existence of integral solutions for a nonlinear differential equations with
nonlocal initial conditions through Huasdorff measure of no compactness in the separable and uniformly
smooth Banach spaces. In his work, Xue, X (2008) dropped the compactness of semi group. The semi group
in his work is a contraction semi group satisfying equicontinuity, which is a special case of a strongly
continuous semigroup.With respect to controllability, it is known from the of Hermes and J.P. La Salle
(1969) that if the linear ordinary control system

x(t) = A(©)x(t) + B()u(t) (1)
Is proper and if the free system
x(t) = A(D)x(t) (2)

Is uniformly asymptotically stable, then system (1) is null controllable with constraints. A similar result was
obtained by Chukwu(1980) for the delay system of the form

x(t) = L(t,x.) + BOu®) + f(t,x,u®)) (3)
where , L(t, $) —ZAk(t)qb( tk)+f A(t,$)(s)ds.

Shinba (1985) studled the nonlinear infinite delay system of the form

x(t) = L(t,x;) + B(t)u(t) +f A(@)x(6)do + f(t,x,,u(t)) (4)
And showed that system (4) is Euclidean null_s:oontrollable if the linear base system
x(t) = L(t,x,) + B(Ou(t) (5)

Is proper and the free system

0
2(t) = L(t,x,) + BOu(t) + f A(0)x(0)d6 (6)

is uniformly asymptotically stable, provided that f satisfies some growth conditions.
Onwuatu(1993), studied the neutral systems with infinite delay of the form

0
iD(t,xt) = L(t,x.) + B(t)u(t) + j A(@)x(t + 0)do + f(t,x, u(®)) (7)
x(t) =¢(t); te (—oo 0]

where , L(t, ¢) —ZAk(t)qb( tk)+f A(t, $)(s)ds.

He developed sufflaent computable criteria for the null controllability of system (7).
While Oraekie (2018)studied the nonlinear infinite neutral systems with Multiple Delays

in the Control of the form'
0

D(t x¢) = L(t, x,) + z Bju(t—h;) + fA(G)x(t +0) do + f(t, x, u(®) woe oo (8)
j= —oo
He developed sufflaent computable criteria for the null controllability of the system (8).
His results extend those of Hermes and Salle (1969), Chukwu (1980), Sinba (1985)and
Onwuatu (1993) to nonlinear infinite neutral systems with multiple delays in the control.
In this paper, therefore,we consider the null controllability of the Semilinear Dif ferential
Systems of Nonlocal Initial Conditions with Distributed Delays in the Control in Banach Spaces

of the form:
0

x1(t) = Ax(t) + f [doH(t,0)]u(t + 8) + f(t,x(¢)) (9)
X0+ =x
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with the main objective of investigating the null controllability of the system(8).

Here, the state x(.) takes value in a Banach Space X = R™ with the norm |.|;

the operator A generates a strong continuous not necessarily compact, semigroup T(t) in X.
And the control function u(.)is given Lebsgue square integrable functions L,(J,U);

there is a Banach Space of admissible control functions with U a Banach Space.H(t,0) is an
nxn matrix function continuous at t and of bounded variation in 6 on [—h,0],h > 0
foreacht [ty ti];t; > to.

The functions f:]xX - X ,g:C(J,X) = X are continuous. Here, x, = x(0) is a given

element in X ,C(J,X) denotes the Banach space of continuous functions x(.) : ] » X

with the norm ||x|| = sup{|x(¢t)|,t € J}.

The nonlocal initial condition is a generizeation of tthe classical initial condition, which
was motivated by physical phenomena.The pioneering work on nonlocal conditions is due to

Byszewski (1991) followed by Fu.X.Ezzinbi(2003).

2. Preliminaries and Notations

Consider the following dynamical system(9) given as
0

x(t) = Ax(t) + f [doH(t, )] ult +6) + f(t,x(1)) (11)
—h
x(0) + g(x) = xo

If T(t, ty):B = B,t >ty isdefined by T(t,ty)¢ = x:(to, ¢) and the solution x(t) of
system(11)with the initial complete state y,, = {xq,Uo} is of the following form

(see Klamka(1978)as contained in Klamka(1980):

x(6) = T(®)xo — g(O] + f T(t - $)f (s, x(s))ds

0
t

0
+f T(t—s)f [doH(t,0)] u(t + 6)ds (12)
to -h

Where T(t — s) is the state transition of the following linear homogeneous system
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x1(t) = Ax(¢t) (13)
The third term in the right - hand side of system(12)contains the values of the control u(t)
fort <t,,aswell as fort > t,.The values of the control u(t) fort € [ty — h,ty] enter

into the definition of initial complete state y;, .To separate them , the third term of

system(12) must be transformed by changing the order of integration..Using the Unsymmetric
Fubini theorem, we have the following equalities:

x(€) = T(0) o — 9 (0] + f T(t — $)f (s, x(s))ds
t

0

0 t
+f dy, (f T(t—s)H(z,e)u(z+9)dz> (14)
-h t

=>x(t) =T({t)[xy — g(x)] +f T(t— s)f(s,x(s))ds
to

0 t+60
+j dy, O T(t—s)H(—6,0)u(l— 6 + 9)dl> (15)
h t

0t6

=T)[xo —gx)] + f T(t— s)f(s ,x(s))ds
to

0 t+6
+f dy, (f T(t—s)H(l — 9,9)u(l)dl> (16)
—-h t

046
= x(t) =T)[xg — g(x)] +f T(t— s)f(s,x(s))ds

0 to
+ f_ i, ( ft T(t—s) H(l — H,H)uto(l)dl>

ot0

0 t+0
+] Ay, <ft T(t—s)H( -6 ,H)u(l)dl) (17)

—h 0
Where the symbol dy,denotes that the integration is in the Lebesque — Sieltjes

senes with respect to the variable 8 in the functionH(l,8) .
Let us introduce the following notation

H,(1, 0) ={H(l,ér), [<t,6ER

0,l>t,0€ER (18)

Thus, x(t)can be expressed in the following form:
= x(t) =T)[xy — glx)] + f T(t— s)f(s,x(s))ds
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0 to
+ du, ( | re-sna-o, e)uto(z)dl>

+ f_hng (ft T(t—s)H,(l-86, 9)u(l)dl> (19)

0
Using again the Unsymmetric Fubini theorem, the equality (19)can be rewritten in a more
convenient form as follows:

*(t) = T(Olxo — 90O + f T(t — )f (s, x(s))ds

0 to
+ ] dy, ( jt T(t—s)H(l—H,H)uto(l)dl>

~h 0+0

t 0
+f f T(t —s)doH,(I—6,6) |u(ldl (20)
t

-h

Now let us consider the system (20) — the exact mild solution of the system(8)
fort =t

t1
x(t) = T(t)[xo — g (O] + f T(t, - $)f (s, %(s))ds

to

0 to
+ J dy, < j T(tl—s)H(l—H,G)uto(l)dl>

~h 0+0

ty 0
+f f T(t, —s)dgH,, (1 —6,8) |u(l)dl (21)
. B 1

0 h
2.1 BASIC SET FUNCTION AND PROPERTIES.
Definition 2.1.1 (Reachable Set)

The reachable set of the system(9)denoted by R(t, ,t,) is given as:

ty 0
R(tl,to)z{f <f T(tl—s)dgHtl(l—9,9)>u(l)dl u€eU;|y|<1;j=12,...,m
t

0 —h

where U = {u € L,([ty,t;],R™)}.

Definition 2.1.2 (Target Set)
The target set for the system(9)denoted by G(t, ,t,) is given as:

G(ty,ty) ={x(ty,x0,u): ty =T >ty, for some fixed T € [ty,t;] andu € U}.

Definition 2.1.3 (Attainable Set)
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The attainable set for the system(9) denoted by A(t, ,t,) is given as:
Aty t) ={x(ty, %0, W : u€el; |y|<1;j=12...m}; U={ueLl,([t, t;], R™}
Definition2.1.4 (Controllability Grammian or Map)
The controllability grammian or map of the system(9)denoted by W (t, ,t,) is given as
t 0 0 T
W(t,,ty) = LO (f_hT(t1 —s)dgH, (1-6 ,0)) O—hT(tl —s)dgH, (1-6, 9))

Where T denotes matrix transpose.

0

If Y(ty) = f T(t,—s)deH, (1-6,0) (22)
—h
Then, W(t;,t,) = f tly(tl) YT(t,) and Wl(t,,ty) = 1 (23)
to ¥ (E) Y7 (1)

Definition2.1.5 (Properness)

The system (9)is said to be proper on an interval [t,,t,]if
0
CTf T(ty —s)deH, (1—6,08) =0ae,l € [ty,t;] = C=0;C €R"
~h

If the system(9)is proper on each interval [t,,t,];t; > t,,we say that system(9) is
proper in R™.
Definition2.1.6 (Positive Definite)
The controllability grammian or map of the system(9)denoted by W (t, ,t,) is said to be
positive definite if W(t, ,t,) varnishes only at the origin and W(x) > 0,

forallx +#0;x € D,whereD ={x € R": ||x|| <r;r >0} c R"

Definition2.1.7 (Complete Controllability)
The system(9) is said to be completely controllable on the interval [ty ,t,] if for every
function ¢ and every state x; € R™, there exists an admissible control energy

function u € U such that x(t;) = x; .
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Definition2.1.8 (Complete State)
We denote the complete state of system(9) by z(t) = {x(t),u.}
Then, the initial complete state of system(9) at time tyis z(ty) = {x(t,) ,uto}
Definition2.1.9 (Null Controllability)
The system(9) is said to be null controllable on the interval [ty ,t,] if for every
function ¢ € B([ty,t;],R™),there exists atime t; = ty,u € L,([ty,t1],P),P a compact
convex subset of R™ such that the solution x(t,ty,¢ ,f) of system(9) satisfies
xt,(to, @ . f) = ¢ and x(t1,t,¢ ,f) =0

Definition2.1.10 (Relative Controllability)

The system(9) is said to berelatively controllable on the interval [t,,t;]if

A(ty,to) NG(ty ,t0) # ¢, t; >ty € [ty,tq].

3. MAIN WORK

The following theorems on controllability of system(9) are similar to the corresponding results for linear
control systems of wvarious types including some with delays and some without delays(see
Oraekie(2017),Onwuatu(1993),Hermes and La Salle(1963)).

Theorem 3.1

The following statements are equivalent:
() The controllability grammian W (t, ,t,) of sysem(9)is non — singular

(ii). System(9) is completely controllable on the interval [t,,t,]. t; > t,
(iii). System(9) is proper on the interval [t,,t,]. t; >t
Proof
The controllability grammian W (t, ,t,) of sysem(9)is nonsingular is equivalent to saying
that it is positive definite, which in turn is equivalent to saying that the CTof the controllability

index of system(9)is equal to zero almost everywhere ,implies that C = 0.
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0
i.e . CTJ. T(ty —s)doH, (I1—60,0)=0ae,l€[ty,t;] >C=0;C
~h

€ R™. Thus, showing that(i)and(iii)are equivalent..

Now consider

CTft1 (f T(ty —s)deH, (I1—6 ,9)>U(Ddl =0ae,l€[to, tu]-

o h

For each l,then

tq 0 ty 0
f cT ( f T(t, - 5) dgHe, (1 — 6 ,9)>u(l)dl e [ f ( f T(t, - 5) dgH,, (1 6, 9)) u(l)dl] =0
to —h to -h

It follows from this that C is orthogonal to the reachable set R(t,,t,).
If we assume the relative controllability of system(9) now, then
R(ty,ty) = R™,sothat C = 0 .Showing that (ii) implies (iii).
Conversely, assume that system(9)is not controllable so that

R(t;,ty) =RMt; > t,.
Then there exists C # 0,C € R™ such that
CTR(ty,ty) =0

It follows now that for all admissible controls u € U c L,([ty,t;],R™)

ts 0
0= cT U <f T(t, — 5) dgH, (1 — 9,9)>u(l)dl]
t —h

0
Hence,CTR(ty ,ty) =0 ae,l € [ty,t,],C # 0.
This situation, impliesthat system(9) is not proper by the definition of properness since
C # 0.Hence, the system(9)is relatively controllable on [ty ,t,] and hence completely
controllable.
Theorem 3.2
Assume for system (9) that:

(i).the constraint set U is an arbitrary compact subset of R™.
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(ii).the system(6) satisfies exponential estimate.

i.e.||x(t,ty,d,0)| < Me=8C-1)|p], for some § > 0,M > 0.
(iii). the linear control system — (system(5)), is proper in R™.
(iv).the continuous function f satisfies

IF(t,x(. );Ou(-))l < exp(—NO)m(x(.),u(.)), for all (t,x(.),u(.)) € [ty,©)xExL,,
where f n(x(s),u(s))ds <A< wand N —§ = 0,then system(9)is null controllable.
t

0

Proof

By (iii) — the linear base control system (system(S)), there exists an inverse of
the controllability grammian say W~1(t, ,to) for each time t; > t,. Suppose that the
pair of functions x and u form a solution pair to the set of integral equations:

0 T ts
u(t) = — U T(t; —s)dgH, (I1—6, 6)] W=i(ty,ty) [T(tl)(xo - g(x)) + f T(t; — s)f(s,x(s))ds
to

—h

0 to
+ f_hdHe (ft T(t;—s)HI -6 'H)uto(l)dlﬂ

ot0

Substituting equation (22) and (23) into the above, we have

~YT(ty) l h
u(t) = — T(t)(xg—gx))+ Tty —s)f(s,x(s))ds
ftol Y(t) YT(tq) ( ) ‘];0 ( )
0 to
+ f dy, (f T(ty —s)H( —6,0)u,, (l)dl)l (24)
-h to+6

X(©) = Tl — 901 + [ T =) (5.,x()ds
+f dy, (f T(t—s)H(l — H,H)uto(l)dl>
—h t

ot0

t 0
+ft (f_ T(t — ) dgH,(l —9,9)>u(l)dl (25)

0 h
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x(t) = ¢(0),t € [ty — 4, to].
Then u is square integrable on [ty ,t,] and x is a solution of system(9)corresponding to u
with the initial state x(t,) = ¢.

Also,using u as expressed in equation (24), we have

X(0) = Tl = 9@ + | Tt = (s, x()ds

to

0 to
+ f_hd,,e < j; T(t, —s)H(l— 6, G)uto(l)dl>

ot0

t [ 0 _
+ jto (f_hT(tl —s)dgH, (1—6 ,9)>f T 1) YT( 5 l (t1)(x0 — g(x)) +J T(t, — s)f(s,x(s))ds
0 to
-h to+0
0
ButY(t,) = j T(t; —s)dgH, (1-6,0),therefore,we have
—h

X(0) = Tl = 9@ + | Tt = (s, x()ds
to

0 to
4 f_hd,,g < j; T(t, —s)H(l— 6, G)uto(l)dl>

ot0

( (t )) mglCV [T(t )(x —g(x))+Jt1T(t —8)f(s,x(s))ds
P\vapyran )L oo '

0 to
+ J dHe <f T(ty—s)H(l -0, G)uto (l)dl)l (27)
-h t

ot0

= x(ty) = T(t)[xo — 9G] + j Tty — )f (s, x(s))ds

to

0 to
+ J_hng <ft T(t,—s)H( -6, Q)Uto(l)dl>

o+6
[ Y)Y (ty) l t
— t°1 T(t)(xo—g@)+ | T, —35)f(s,x(s))ds
(fto RTen | R R | o2
0 to
+ f dy, < f T(t1—s)H(l—H,H)uto(l)dl>l (28)
_h to+0

= x(ty) = T(t) [ — g()] + f Tty — $)f(s,x(s))ds

to
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0 to
+ f_hng <.[; T(ty —s)H(—6,0)u,, (l)dl)

-1 [T(tl)(xo —g(x) + f 1T(t1 —5)f(s,x(s))ds

0

+ f dy, < f T(t,—s)H(— 0, H)uto(l)dl>l (29)
~h to+0
= x(tr) = T(t)[xo — g(0)] + f Tty — 9)f (s, x(s))ds
+ f_hd,,g < ft 0+9T(t1 —$)H( -9, G)uto(l)dl>

— [Tt (%0 — 9()] - f Tty - 9)f (s,x(s))ds

to

0 to
—f dy, <] T(t, — s) H(l — B,H)uto(l)dl> =0.

~h 0+0

It remains to show that the function u: [ty ,t,] = U is an admissible control.
That is ,we need to show that u: [ty ,t;] = U is in the arbitrary compact constraint
subset of R™.That is |u| < 6, , for some constant §; > 0.
By(ii)of theorem3.2, we have

0 T
Hf T(t; —s) dthl(l -0, 0)] Wity ,t)| <Ay
-h
, Y (ty)
e ;|4 A, for some A; > 0 and
J Y& YT (ty)

| T(t)[xo — g(0)]] < Azexp(—d(tl - to)) ,for some constant A, > 0

Hence,

lu(®)| < 44 [Azexp(—5(t1 — to))] 1)L3ex]0[—6(t1 — s)exp(—Ns)n(x(.),u(.))ds]

to

Thus,

lu(t)| < A4 [Azexp(—S(tl — to))] + Adzexp(—4t,) (30)
sinceN—6 =>0and s >ty = 0.
Hence, by taking t sufficiently large, we have

lu(t)| <6, ,t€|[ty,t1],showing that u is an admissible control.
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Finally, we now prove the existence of a solution pair of the integral equations(24)and(25).
Let E be the Banach space of all functions (x,u): [ty — h,t;]x[ty — h,t;] » R"xXR™,
where x € E([to — h,t{],R™) ;u € L,([ty — h,t{], R™) with the norm defined by

1Ce, = llxllz + llull2

tl tl
where , |lxll, = / f ()2 ds; , lull, = / f [u(s)[? ds

We define the operator T by T:E — E by T(x,u) = (y,v) ,where

—-Y7(ty) [ fa
v(t) = — T(t)(xo—g)) + T(ty —s)f(s,x(s))ds
ftol Y(t) YT (ty) ( ) J;o ( )
0 to
+ f dy, (f Tty —s)H(I—6,0)u, (l)dl)l (24)
“h to+6

And v(t) = w(t) , for somet € [ty — A, t,]

%1
y(6) = Tl = Gl + [ Tt = ) (5., x()ds

to

0 to
+ J dy, < j T(tl—s)H(l—H,G)uto(l)dl>

~h 0+0

ty 0
+f f T(t, —s) doH,,(1—8,0) |u(Ddl (25)
t —h !

0
y(@) = ¢(t),t € [to — 1, tol.
We have already shown that |u(t)| < 8, ,t € ] = [ty,t1] and also for the function
v [to—h,to] 4 U,

1
we have |v(t)| < 6; .Hence, ||x||; < 6,(ty + h —ty)2 = N,.

t1
Again, |y(t)| < A,exp[—6(t; — ty)] + /L;J lv(s)|ds + Adzexp(—4t,), where

to

Ay = sup

0
j T(t, — 5) dgH,, (1 — 0 ,e)‘.
—-h

Since § > 0,t; = t, = 0 ,we deduce that

|y(t)| S /12 + /146(1:1 - to) + /1/13 == N1 ,t € [to 'tl]'
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and ’|3’(t)| S Supl(nbl = Blt € [tO _rlt()]'

Hence,if M = max[N;, 8], then, Iy, < M(ty + h — to)% =N, < oo,

Let p = max[N,,N,] .

Then,if G(p) ={(x,uw) €E: |xll, <p,llull; <p }, we have thus shown that the

operator T maps G into its self. i.e, T : G(p) = G(p).

Since G(p)is closed, bounded and convex, by Riesz theorem as contained in Kantorovica
,L.Vand G.P. Akilov (1982),p297, and Oraekie(2017) . Onwuatu (1993) it is relatively
compact under the transformation of T . Hence, the Schauders fixed point theorem implies

that T has a fixed point.Thus, the system(9) is null controllable.

4 .CONCLUTION

The Set Functions upon which our studies hinged are also extracted from the mild solution
which we cultivated. Necessary and Sufficient Conditions for the null controllability of the
Semi linear differential systems with distributed delays in the control have been derived.

These conditions are given with respect to the controllability of the linear controlled base
system of system(9) and the uniformly asymptotic stability of the uncontrolled linear system
of the system(9),assuming that the perturbation f satisfies some smoothness and growth
conditions. These results extended known results in the literature.
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